| ||
| ||
doi: 10.24412/2687-1092-2022-9-112-116 1 Computer and Software Engineering Department, Polytechnique Montréal, Montreal, Canada 2 Earth Cryosphere Institute FRS Tyumen Science Center SB RAS, Tyumen, Russia 3 Tyumen State University, Tyumen, Russia
|
Abstract. Paleoglaciological modelling were carried out for sectors of the North Europe and west of the Arctic. For same bed topography for different profils of British–Irish, Scandinavian and Barents–Kara Ice Sheet during the MIS1, we are in our research launched a whole ensemble of simulations with noisy accumulation rates. We can also control during our modelling the mean accumulation rate, which varies the evolving position of the grounding line over the course of the simulation. We can also experiment the standard deviation of the accumulation rate, drawn from a Gaussian distribution, which varies the spread of evolving position of the grounding line over the course of the simulation. Keywords: Late Pleistocene, Arctic, paleoglaciological modeling, grounding line, accumulation rate
REFERENCES: Catania G. et al., Geometric controls on tidewater glacier retreat in central western Greenland // Journal of Geophysical Research: Earth Surface. 2018. Vol. 123. Is. 8. P. 2024–2038. doi: 10.1029/2017JF004499 di Bernardo M., Budd C., Champneys A.R., Kowalczyk P. Piecewise-smooth Dynamical Systems: Theory and Applications. 2008. Vol. 163 SEP. London, UK: Springer Science & Business Media Mitcham T., Gudmundsson G.H., Bamber J.L. The instantaneous impact of calving and thinning on the Larsen C Ice Shelf // The Cryosphere. 2022. Vol. 16. P. 883–901. doi: 10.5194/tc-16-883-2022 Pegler S.S. Suppression of marine ice sheet instability // Journal of Fluid Mechanics. 2018. Vol. 857. P. 648–680. doi: 10.1017/jfm.2018.742 Morlighem M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet // Nature Geoscience. 2020. Vol. 13. Is. 2. P. 132–137. doi: 10.1038/s41561-019-0510-8 Robel A.A., Pegler S.S., Catania G., Felikson D., Simkins L.M. Ambiguous stability of glaciers at bed peaks // Journal of Glaciology. 2022. Vol. 68. Is. 272. P. 1177-1184. doi: 10.1017/jog.2022.31 Robel A.A., Roe G.H., Haseloff M. Response of marine-terminating glaciers to forcing: Time scales, sensitivities, instabilities, and stochastic dynamics // Journal of Geophysical Research: Earth Surface. 2018. Vol. 123. Is. 9. P. 2205–2227. doi: 10.1029/2018JF004709 Schoof C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis // Journal of Geophysical Research: Earth Surface. 2007. Vol. 112. Is. F3. P. 1-19. doi: 10.1029/2006JF000664 Sergienko O.V., Wingham D. Grounding line stability in a regime of low driving and basal stresses // Journal of Glaciology. 2019. Vol. 65. Is. 253. P. 833–849. doi: 10.1017/jog.2019.53
|
Cite this article: Kashdan A.Y., Sheinkman V.S. 2022. Surface balance and grounding line of ancient Arctic ice sheets // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9. P. 112-116. doi: 10.24412/2687-1092-2022-9-112-116
|