1Kokhan A.V., 1Moroz E.A., 1,2Eremenko E.A., 1,2Denisova A.P., 3Ananiev R.A., 1Sukhikh E.A., 3Nikiforov S.L., 1Sokolov S.Yu.

MORPHOLOGY OF PINGO-LIKE FEATURES ON THE SHELF OF THE PECHORA AND KARA SEAS AS AN INDICATOR OF THEIR AGE AND DYNAMICS 

Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9.

Download *pdf

doi: 10.24412/2687-1092-2022-9-143-148

1 Geological Institute of RAS, Moscow, Russia

2 Lomonosov Moscow State University, Moscow, Russia

3 Shirshov Institute of Oceanology of RAS, Moscow, Russia 

 

     

Abstract. Using to the results of multi-beam echo sounding and high-frequency seismic profiling performed during expeditions of RV «Akademik Nikolai Strakhov» and «Akademik Boris Petrov» in 2018-2022, regularities of changes in morphometric parameters and the internal structure of pingо-like features on the shelves of the Pechora and Kara seas were established. A morphometric analysis of pingo-like features was carried out, which made it possible to draw conclusions about their relative age, as well as the degree of participation of the activity of near-bottom currents and slope processes in their modern dynamics. It was revealed that the density and morphological diversity of pingo-like features depend on the geomorphological and geological position within the bottom area, the presence, thickness and type of permafrost, the intensity of degassing, and the time of shelf flooding during the Holocene transgression.

Keywords: Arctic, degassing, fluidogenic landforms, acoustic anomalies, Holocene transgression, permafrost

 


 

 

REFERENCES:

Bondarev V.N., Rokos S.I., Kostin D.A., Dlugach A.G., Polyakova N.A. Subpermafrost gas accumulations in the upper part of the sedimentary cover of the Pechora Sea // Russian Geology and Geophysics. 2002. V. 43. No. 7. P. 587–598. (In Russ.)

Kamalov A.M., Ogorodov S.A., Biryukov V.Yu., Sovershaeva G.D., Tsvetsinsky A.S., Arkhipov V.V., Belova N.G., Noskov A.I., Solomatin V . Morpholithodynamics of the shores and bottom of the Baidaratskaya Bay on the route of the main gas pipelines // Earth's Cryosphere. 2006. Vol. 10. No. 3. P. 3–14. (In Russ.)

Melnikov V.P., Spesivtsev V.I. Engineering-geological and geocryological conditions of the shelf of the Barents and Kara seas. Novosibirsk: Science. 1995. 194 p. (In Russ.)

Melnikov V.P., Fedorov K.M., Wolf A.A., Spesivtsev V.I. Analysis of a possible scenario for the formation of near-bottom ice mounds on the shelf of the Pechora Sea // Earth's Cryosphere. 1998. Vol. 11. No. 4. P. 51-57. (In Russ.)

Mironyuk S.G., Kolyubakin A.A., Golenok O.A., Roslyakov A.G., Terekhina Ya.E., Tokarev M.Yu. Mud volcanic structures (volcanoids) of the Kara Sea: morphological features and structure // Geology of Seas and Oceans: Proceedings of the XXIII International Scientific Conference (School) on Marine Geology. M. IO RAN. 2019. Vol. 5. P. 192-196. (In Russ.)

Mironyuk S.G. Fluidogenic formations: substantiation of the identification of a new genetic group of the seabed relief // VIII Shchukin Readings: Relief and Nature Management. Materials of the All-Russian conference with international participation. 2020. P. 37-43. (In Russ.)

Khutorskoy M.D., Podgornykh L.V., Gramberg I.S., Leonov Yu.G. Thermotomography of the Western Arctic Basin // Geotectonics. 2003. No. 3. pp. 79-96.

Gavrilov A., Pavlov V., Fridenberg A. et al. The current state and 125 kyr history of permafrost on the Kara Sea shelf: modeling constraints // The Cryosphere. 2020. Vol. 14. P. 1857–1873. doi: 10.5194/tc-14-1857-2020

Judd A., Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University Press. 2007. 492 p.

Overduin P., Schneider von Deimling T., Miesner F. et al. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP) // Journal of Geophysical Research: Oceans. 2019. Vol. 124. Is. 6. P. 3490-3507. doi: 10.1029/2018JC014675

Paull C.K., Lii W.U., Dallimore S.R., Blasco S.M. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates // Geophysical Research Letters. 2007. Vol. 34, L01603. doi:10.1029/2006GL027977

Paull C.K., Dallimore S.R., Jin Y.K., Caress D.W. et al. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost // PNAS. 2022. Vol. 119. Is. 12. doi:10.1073/pnas.2119105119

Portnov A., Smith A.J., Mienert J., Cherkashov G. et al. Offshore permafrost decay and massive seabed methane escape in water depths >20m at the South Kara Sea shelf // Geophysical Research Letters. 2013. Vol. 40. Is. 15. P. 3962-3967. doi:10.1002/grl.50735

Serov P., Portnov A., Mienert J., Semenov P., Ilatovskaya P. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost // Journal of Geophysical Research. Earth Surface. 2015. Vol. 120. P. 1515–1529. doi:10.10022015JF003467

Shearer J.M., Macnab R.F., Pelletier B.R., Smith T.B. Submarine pingos in the Beaufort Sea // Science. 1971. Vol. 174. Is. 4011. P. 816-818. doi: 10.1126/science.174.4011.816 

 

 

Cite this article:

Kokhan A.V., Moroz E.A., Eremenko E.A., Denisova A.P., Ananiev R.A., Sukhikh E.A., Nikiforov S.L., Sokolov S.Yu. 2022. Morphology of pingo-like features on the shelf of the Pechora and Kara seas as an indicator of their age and dynamics // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9. P. 143-148. doi: 10.24412/2687-1092-2022-9-143-148

 



eXTReMe Tracker


Flag Counter

Яндекс.Метрика

Hosted by uCoz