1Nikolaeva S.B., 1Tolstobrov D.S., 2Koroleva A.O., 3Kostromina N.A., 4Pronina A.V.

GRAVITY-FLOWS IN LATE GLACIAL MARINE DEPOSITS OF THE URA RIVER (BARENTS SEA COAST, KOLA REGION) AND THEIR CONNECTION TO THE SEISMICITY 

Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9.

Download *pdf

doi: 10.24412/2687-1092-2022-9-175-180

1 Geological Institute of Kola Science Center RAS, Apatity, Russia

2 Schmidt Institute of Physics of the Earth, Moscow, Russia

3 VNIIOkeangeologia, St. Petersburg, Russia

4 Herzen State Pedagogical University, St. Petersburg, Russia 

 

     

Abstract. The paper discusses various types of deformation structures in Late Glacial marine deposits in the Ura River valley on the Barents Sea coast (NW Kola region) and their sedimentation settings. Six horizons of deformations produced by various types of gravitational flows (turbidity currents, debris flow, liquified flows) have been discovered in sedimentary sequences of the U4/2021 section. Some of the flows were caused by the Late and Post Glacial seismotectonic activity. Major types are represented by load cast structures and genetically linked flame structures, water escape structures, horizons with sedimentary breccias, various faults and liquefaction phenomena. Formation of horizons with deformations might be triggered by earthquakes and aftershocks that followed fast deglaciation of the area and activation of the major Karpinsky fault separating the Barents Sea plate from the Kola Peninsula.

Keywords: soft-sediment deformations, turbidity and debris currents, earthquakes, marine deposits, Late Pleistocene, Barents Sea, Kola region

 


 

 REFERENCES:

Godzikovskaya A.A., Asming V.E., Vinogradov Yu.A. Retrospective analysis of primary data on seismic events recorded on the Kola Peninsula and adjacent territory in the 21st century. M.: Your printing partner. 2010. 130 p. (In Russ.)

State geological map of the Russian Federation. Scale 1: 1,000,000 (third generation). Series Baltic. Sheet Q–(35), 36 (Apatity). Explanatory note / Ch. ed. Yu.B. Bogdanov. St. Petersburg: VSEGEI Cartographic Factory, 2012. 456 p. (In Russ.)

Gradzinsky R., Kostetskaya A., Radomsky A., Unrug R. Sedimentology / Per. from Polish. M.: Nedra, 1980. 646 p. Evzerov V.Ya. Placement of deposits of sand, sand-gravel mixtures and fusible clays of the Kola region in connection with deglaciation. Bulletin of the Voronezh University. Ser. geological. 2000. 9. P. 152–159. (In Russ.)

Yevzerov V.Ya. Association of sediments in fluvioglacial deltas (evidence from northwesternmost Russia) // Lithology and Mineral Resources. 2007. Vol. 42. № 6. P. 505-514. doi:10.1134/S0024490207060016

Nikolaeva S.B. Seismogenic deformations in early Holocene sediments of the Pechenga river terrace (Kola peninsula) // Doklady Earth Sciences. 2006. Vol. 406. № 1. P. 4-7. doi: 10.1134/S1028334X06010028

Nikonov A.A., Shvarev S.V. Seismolineaments and destructive earthquakes in the Russian part of the Baltic Shield: New solutions for the last 13 thousand years // Proceedings of the Intern. conf. "Geological and geophysical environment and various manifestations of seismicity". Neryungri: Publishing House of Techn. Institute (branch) of NEFU. 2015, pp. 243–25. (In Russ.)

Polyakov A.S. Granulated media and sedimentogenesis // General and regional geology, geology of seas and oceans, geological mapping. Moscow: Geoinformmark, 2001. 59 p. (In Russ.)

Gruszka B. & Van Loon A.J. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (Central Poland) // Sedimentary Geology. 2007. Vol. 193. P. 93–104.  doi:10.1016/J.SEDGEO.2006.01.009

McCalpin J. P. Paleoseismology. International Geophysics 95. Elsevier. 2009. 802 p.

Moretti M. & Van Loon A.J. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites // Journal of Palaeogeography. 2014. Vol. 3. Is. 2. P. 162–173. doi: 10.3724/SP.J.1261.2014.00050

Mörner N.-A. Paleoseismicity of Sweden – a novel paradigm. P&G-unit, Stockholm University, 2003. 320p.

Owen G. & Moretti M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands // Sedimentary Geology. 2011. Vol. 235. P. 141–147. doi: 10.1016/j.sedgeo.2010.10.003

Pisarska-Jamroży M., (Tom) Van Loon A.J., Mleczak M., Roman M. Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound // Geomorphology. 2019. Vol. 326. P. 239–251. doi:10.1016/j.geomorph.2018.01.010

Stewart L. S., Sauber J., Rose J. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity // Quaternary Science Reviews. 2000. Vol. 19. P. 1367–1389. doi:10.1016/S0277-3791(00)00094-9

Tuttle M., Law K.T., Seeber L., Jacob K. Liquefaction and ground failure induced by the 1988 Saguenay Quebec, earthquake // Canadian Geotechnical Journal. 1990. Vol. 27. Is. 5. P. 580–589. doi: 10.1139/t90-073

 

 

Cite this article:

Nikolaeva S.B., Tolstobrov D.S., Koroleva A.O., Kostromina N.A., Pronina A.V. 2022. Gravity-flows in late glacial marine deposits of the Ura river (Barents sea coast, Kola region) and their connection to the seismicity // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9. P. 175-180. doi: 10.24412/2687-1092-2022-9-175-180

 

 Лицензия Creative Commons
 

 



eXTReMe Tracker


Flag Counter

Яндекс.Метрика

Hosted by uCoz