1Fakashchuk N.Yu., 2Dvornikov Yu.А., 1Оpokina О.L., 1,3Khomutov А.V.

THERMODENUDATION AS A FACTOR OF HYDROCHEMISTRY FORMATION SMALL TUNDRA LAKES 

Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9.

Download *pdf

doi: 10.24412/2687-1092-2022-9-279-284

1 Institute of Earth Cryosphere, Tyumen, Russia

2 Peoples' Friendship University of Russia, Moscow, Russia

3 Tyumen State University, Tyumen, Russia 

 

     

 Abstract. Hydrochemical monitoring of inland waters allows to assess their conditions and to estimate the impact of climate change. During the last decade, relevance of the research related to the impact of permafrost thaw on the state of small lakes in the Arctic has been growing. This study aims to investigate the impact of thermodenudation on the ionic composition of small tundra lakes in Yamal peninsula. The influence of interannual fluctuations in air temperature and precipitation on the ionic composition of lakes has been statistically established - the content of NO2-, Br-, NO3-, HCO3- at the level of significance p = 0.05. Active thermodenudation on the shores of these lakes leads to the uptake of mineralization levels by an average of 42.8% and changes the concentration of major ions Na, Ca, Mg, K, PO4, HCO3. Herewith, the climatic fluctuations can have a greater impact on the ionic composition compared to thermodenudation. Significant increase in precipitation and annual air temperatures intensifies the thawing processes within retrogressive thaw slumps and leads to the increase in mineralization of small lakes, Ca, Mg, NH4 и HCO3 ions in particular.

Keywords: thermodenudation, small tundra lakes, hydrochemistry, climate changes, Yamal, retrogressive thaw slump


 

REFERENCES:

Babkina E.A., Leibman M.O., Dvornikov Y.A., Fakashchuk N.Y., Khairullin R.R., Khomutov A.V. Activation of cryogenic processes in Central Yamal as a result of regional and local change in climate and thermal state of permafrost // Russian Meteorology and Hydrology. 2019. Vol. 44. № 4. P. 283-290. doi: 10.3103/S1068373919040083

Glaciological dictionary. - L .: Gidrometeoizdat, 1984. (In Russ.)

Vasilchuk Yu.K., Budantseva N.A., Vasilchuk D.Yu., Vasilchuk A.K., Garankina E.V., Chizhova Yu.N., Shorkunov I.G. Isotope-geochemical composition of reservoir ice deposits in the interfluve of the Mordyyakha and Seyakha (Mutnaya) rivers, Central Yamal // Arctic and Antarctica. 2018. 1. P. 50-75. (In Russ.) doi: 10.7256/2453-8922.2018.1.25833

Kremleva T.A. Geochemical factors of stability of water systems to anthropogenic loads: dissertation ... Doctor of Chemical Sciences: 25.00.09 Inst. of Geochemistry and Analytical Chemistry. IN AND. Vernadsky RAS. Moscow, 2015. 260 p. (In Russ.)

Cryosphere of oil and gas condensate fields of the Yamal Peninsula: in 3 volumes. T.2. Cryosphere of the Bovanenkovo oil and gas condensate field / Ed. Yu.B. Badu, N.A. Gafarov, E.E. Podborny. T. 2. OOO Gazprom Expo, Moscow, 2013. P. 391–411.  (In Russ.)

Kritsuk L.N. Underground ice of Western Siberia. M.: Scientific world, 2010. 352 p. (In Russ.)

Changing climate and socio-economic potential of the Russian Arctic: Sat. Art. / resp. ed. S.A. Socratic. M.: Liga-Vent, 2015. 128 p. (In Russ.)

Romanenko F.A., Shilovtseva O.A. Climate change in the Arctic, catastrophic natural processes and landform dynamics on Franz Josef Land // Changing climate and socio-economic potential of the Russian Arctic. Ed. S.A. Socrates. M.: Liga-Vent, 2016. P. 170-196. (In Russ.)

Solomatin V.I., Konyakhin M.A., Nikolaev V.I., Mikhalev D.V. Occurrence conditions and composition of massive ice on the Yamal Peninsula // Materials of glaciological research. 1993. Issue. 77, pp. 139–147. (In Russ.)

Streletskaya I.D., Leibman M.O. Cryogeochemical relationship of massive ice, cryopegs and enclosing deposits of Central Yamal // Cryosphere of the Earth. 2002. Vol. VI. 3. P. 15–24. (In Russ.)

Fotiev S.M. Patterns of the formation of the ion-salt composition of the natural waters of Yamal // Cryosphere of the Earth. 1999. Vol. II. 2. P. 40-66. (In Russ.)

Kholoptsev A.V., Podporin S.A., Kononova N.K. Ice cover of the Arctic and meridional components of atmospheric circulation in the northern hemisphere of the Earth // Complex systems. 2020. 2 (35). P. 4-10. (In Russ.)

Khomutov A.V., Leibman M.O., Dvornikov Yu.A. et al., Thermocircuses of the Kara region: field and remote research methods // Proceedings of the reports of the All-Russian conference with international participation, dedicated to the 60th anniversary of the formation of the Institute of Permafrost Science. P. I. Melnikova SB RAS, Yakutsk (Russia), September 28-30, 2020 P. I. Melnikov SB RAS. 2020. P. 196-200. (In Russ.)

Tsaturov Y.S., Klepikov A.V. Contemporary climate change in the Arctic: results of a new assessment report of the Arctic Council // Arctic: ecology and economy. 2012. 4(8). P. 76-81. (In Russ.)

Bruhwiler L., Parmentier FJ.W., Crill P. et al. The Arctic Carbon Cycle and Its Response to Changing Climate // Current Climate Change Reports. 2021. Vol. 7. P. 14–34. doi: 10.1007/s40641-020-00169-5

Dvornikov Yu.A., Leibman M.O., Khomutov A.V. et al., Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism for lake genesis and development of permafrost landscapes // Permafrost and Periglacial Processes. 2019. Vol. 30. Is. 3. P. 146-162. doi: 10.1002/ppp.2014

Overland J.E., Hanna E., Hanssen-Bauer I. et al. Surface air temperature. In J. Richter-Menge, M. L. Druckenmiller, & M. Jeffries (Eds.), Arctic Report Card. 2019.

 

 

Cite this article:

Fakashchuk N.Yu., Dvornikov Yu.А., Оpokina О.L., Khomutov А.V. 2022. Thermodenudation as a factor of hydrochemistry formation small tundra lakes // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 9. P. 279-284. doi: 10.24412/2687-1092-2022-9-279-284

 

 Лицензия Creative Commons
 



eXTReMe Tracker


Flag Counter

Яндекс.Метрика

Hosted by uCoz