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Изученные четвертичные отложения района желоба Стур-фиорда на акватории 

Баренцева моря характеризуются специфическими чертами распределения РОВ, не 
характерными для современных осадков. Высокие содержания керогена, состав н-алканов, 
изопреноидов, гопанов, а также величины стерановых индексов зрелости РОВ 
свидетельствуют о катагенетической стадии его трансформации. Доминирование во всех 
изученных осадках алкилированных фенантренов, алкилированных хризенов и голоядерного 
фенантрена, отражают преимущественно петрогенную природу вещества. 
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В ходе подготовки материалов для регионального геологического картирования на 

акватории Баренцева моря (район желоба Стур-фиорда) было проведено комплексное 
изучение поверхностных и подповерхностных донных отложений. Образцы были 
отобраны с помощью ковшей VanVin (объемом 20 литров) и «Океан-0.25» на глубинах 
моря 51-313 м с борта НИС «Профессор Молчанов» (2024 г.). Объектом для изучения 
рассеянного органического вещества (РОВ), в том числе углеводородных (УВ) 
молекулярных маркеров, послужили 24 образца (12 станций пробоотбора) (рис. 1). 
Донные осадки представлены преимущественно алевропелитами и биотурбированы 
полихетами. В подповерхностных отложениях встречаются фрагменты двустворок, 
раковин и щебень. 

 

 
Рис. 1. Карта-схема расположения точек опробования донных отложений 

(красным цветом отмечены точки детального изучения РОВ на молекулярном уровне). 
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Методика исследований. Аналитическая процедура исследования РОВ включала: 
определение содержания органического (Сорг) и карбонатного (Скарб) углерода (метод 
сжигания Кнопа), извлечение хлороформного (Ахл) и спирто-бензольного (Асп-б) 
битумоидов, гуминовых кислот (ГК), определение группового состава Ахл битумоидов и 
молекулярного состава углеводородов (УВ). Фракции алифатических и ароматических УВ 
выделяли хроматографическим методом и исследовали на ГХ-МС комплексе Agilent с 
квадрупольным масс-селективным детектором и программным пакетом обработки 
аналитической информации [Petrova et al., 2017; Morgunova et al., 2019]. 

Геохимическая характеристика рассеянного органического вещества донных 
осадков. Для западно-арктического шельфа в целом вещественный состав донных 
отложений определяется преимущественно геологическим строением и литолого-
петрографическим составом пород, слагающих побережье, дно и острова бассейна 
[Биогеохимия…, 1982; Органическое, 1990; Система Баренцева моря, 2021]. Вместе с 
этим как для каждой акватории, так и для отдельных ее районов, характерны свои 
особенности, определяющиеся объёмами поступления осадочного материала, 
циркуляцией вод, тектоническим строением, наличием эманаций, ледовым разносом. 

В рамках настоящего исследования все изученные донные отложения находятся в 
области шельфа Шпицбергена. Согласно данным сейсмоакустического профилирования 
районов желоба Стур-фиорд, мелководных банок, окаймляющих остров Надежды, 
архипелага Тысячи островов, а также Шпицбергенской банки в рельефе дна выявлены 
возвышенности, склоны, всхолмления, что может свидетельствовать о его гляциальном 
происхождении. В понижениях в сейсмоакустической записи проступают черты слоистого 
строения осадочной толщи верхних метров, в то время как на поднятиях на поверхности 
морского дна наблюдаются выходы коренных пород [Гусев и др., 2024]. Это нашло 
отражение в вариациях органо-геохимических характеристик, свидетельствующих о 
смешанном составе РОВ, источники и условия преобразования которого весьма 
многообразны. 

 
Табл. 1. Распределение основных геохимических показателей РОВ. 

 
№ 

п.п. 
Номер 

станции 
Интервал 
отбора, см 

Содержание в осадке, % Групповой состав ОВ, % 
Скарб Сорг Ахл Асп-б ГК Ахл Асп-б ГК ООВ 

1 2418К 0-3 0.12 2.00 0.05 0.04 0.26 1.38 0.99 7.14 90.48 
2 3-7 0.10 2.12 0.03 0.03 0.24 0.75 0.89 6.22 92.14 
3 2421К 0-3 0.02 1.09 0.05 0.04 0.24 2.74 2.25 12.10 82.92 
4 5-12 0.25 0.31 0.03 0.04 0.20 5.96 6.40 35.45 52.20 
5 2437К 0-4 0.12 1.93 0.07 0.04 0.06 1.86 1.14 1.71 95.29 
6 4-8 0.21 1.21 0.05 0.05 0.10 2.37 2.20 4.54 90.89 
7 2446К 0-3 0.28 2.38 0.07 0.05 0.07 1.57 1.23 1.62 95.59 
8 5-10 0.28 2.28 0.07 0.04 0.15 1.58 0.94 3.61 93.87 
9 2454К 0-3 0.29 1.59 0.07 0.06 0.03 2.39 1.95 1.04 94.62 
10 3-8 0.43 0.48 0.06 0.05 0.01 6.88 6.09 1.14 85.89 
11 2459К 0-2 0.21 2.08 0.06 0.06 0.02 1.51 1.49 0.53 96.47 
12 3-8 0.28 2.24 0.05 0.04 0.09 1.20 1.07 2.21 95.52 
13 2461К 0-2 0.36 2.20 0.04 0.03 0.18 1.01 0.85 4.50 93.64 
14 3-8 0.29 2.83 0.03 0.04 0.23 0.49 0.70 4.47 94.35 
15 2466К 0-3 0.12 1.14 0.05 0.04 0.19 2.64 2.01 9.16 86.20 
16 4-9 0.14 1.16 0.05 0.03 0.21 2.19 1.61 9.95 86.25 
17 2473К 0-3 0.22 0.74 0.06 0.03 0.18 4.16 2.25 13.37 80.23 
18 4-9 0.19 1.01 0.03 0.05 0.20 1.82 2.54 10.88 84.76 
19 2474К 0-3 0.58 0.45 0.06 0.04 0.19 7.91 4.54 23.20 64.35 
20 5-10 0.06 0.72 0.06 0.04 0.15 4.60 2.96 11.45 80.99 
21 2478К 0-3 0.53 0.40 0.04 0.06 0.05 5.63 7.94 6.87 79.56 
22 5-10 0.52 0.46 0.04 0.04 0.11 5.18 4.40 13.14 77.28 
23 2480К 0-3 0.25 0.31 0.06 0.04 0.09 10.42 6.52 15.95 67.10 
24 5-10 0.26 0.33 0.05 0.04 0.07 8.39 6.91 11.66 73.04 
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Карбонатность изученных отложений низкая (Скарб <0.6%), содержание Сорг, 
гуминовых кислот (ГК) и битумоидов (Ахл) в осадках варьирует в широких пределах, 
составляя соответственно 0.30÷2.80; 0.01÷0.26; 0.03÷0.07 (табл. 1), что согласуется с 
полученными ранее данными для алевропелитовых отложений изучаемой части акватории 
[Петрова, 1998; Morgunova et al., 2019]. 

В групповом составе ОВ высокие содержания ООВ (>90%) преимущественно 
соответствуют незначительному количеству ГК (0.5÷4.5%), что свидетельствует о 
наличии преобразованного РОВ в части отложений и находится в соответствии с данными 
сейсмоакустического профилирования, выявившего выходы на поверхность дна коренных 
пород. 

Характеристика молекулярного состава РОВ (биомаркеров). В составе РОВ 
изученных поверхностных и подповерхностных осадков н-алканы представлены 
гомологическим рядом н-С14-н-С35 (с преимущественным размытым максимумом в 
области низко- и среднемолекулярных соединений), содержание н-С17 в ~2 раза 
превышает содержание н-С29,  соотношения индексов нечетности (ОЕР17-19~1.0; ОЕР27-

29~1.5; CPI22-30~1.2), а также соотношения н-алканов и изопреноидов (Пр/н-С17~1.1; Фит/н-
С18~0.5) отражают существенный уровень преобразованности РОВ большинства 
отложений (табл. 2; рис. 2-4). Подобное распределение н-алканов характерно для осадков, 
содержащих сырую нефть, битумы или угли [Tissot, Welte,1984]. 

 
Табл. 2. Характеристика молекулярных маркеров. 

 
№ 

п.п. 
№ ст. Инт. 

отбора, 
см 

н-алканы и изопреноиды ПАУ Стераны Гопаны 
С17/ 
С29 

Пр/
С17 

Фит/
С18 

Пр/
Фит 

ОЕР
17-19 

ОЕР
27-31 

CPI1 
C22-30 

%Lithic/ 
ΣC25-33 

TAR MPI-1 Rс С27/
С29 

С29aa 
S/(S+R) 

С31S/ 
(S+R) 

H29 βα/ 
(αβ+βα) 

29Ts/ 
(29Ts+ 

H29) 
1 2418К 0-3 1.42 1.58 0.70 2.25 1.04 2.13 1.45 57.83 0.84 0.62 0.77 0.83 0.32 0.53 0.23 0.21 
2 3-7 1.05 1.56 0.65 2.18 1.06 2.17 1.48 56.51 1.14 0.66 0.80 0.68 0.37 0.54 0.25 0.20 
3 2421К 0-3 1.63 1.36 0.54 2.49 1.02 1.77 1.34 65.24 0.71 0.62 0.77 0.85 0.38 0.54 0.19 0.19 
4 5-12 1.36 1.46 0.58 2.35 1.03 1.86 1.37 63.32 0.89 0.63 0.78 0.59 0.36 0.55 0.22 0.22 
5 2437К 0-4 2.35 0.99 0.36 2.80 1.03 1.36 1.17 80.52 0.51 0.75 0.85 0.99 нд 0.58 0.15 0.21 
6 4-8 2.60 0.98 0.36 2.82 1.02 1.34 1.15 80.78 0.44 0.74 0.84 0.94 0.41 0.57 0.17 0.22 
7 2446К 0-3 2.49 1.05 0.38 2.97 1.03 1.41 1.19 78.13 0.47 0.75 0.85 0.88 нд 0.57 0.16 0.21 
8 5-10 2.71 1.01 0.36 2.96 1.03 1.37 1.17 81.07 0.43 0.75 0.85 нд нд 0.56 0.17 0.22 
9 2454К 0-3 2.14 1.20 0.54 2.39 1.04 1.22 1.13 84.67 0.52 0.75 0.85 1.42 нд 0.56 0.14 0.28 

10 3-8 2.49 1.13 0.51 2.27 1.01 1.24 1.13 84.29 0.45 0.77 0.86 0.65 0.44 0.57 0.13 0.27 
11 2459К 0-2 1.92 1.09 0.43 2.60 1.03 1.47 1.21 76.85 0.59 0.75 0.85 0.52 0.42 0.55 0.17 0.23 
12 3-8 2.13 1.03 0.40 2.62 1.02 1.50 1.21 75.35 0.52 0.74 0.85 нд 0.42 0.56 0.17 0.24 
13 2461К 0-2 1.96 0.97 0.39 2.35 1.01 1.42 1.18 77.76 0.65 0.80 0.88 0.70 0.44 0.55 0.19 0.23 
14 3-8 2.14 0.95 0.37 2.50 1.02 1.44 1.20 76.99 0.58 0.80 0.88 нд нд 0.56 0.19 0.24 
15 2466К 0-3 2.34 1.03 0.35 3.06 1.03 1.37 1.18 79.65 0.52 0.71 0.82 нд нд 0.59 0.15 0.24 
16 4-9 2.23 0.98 0.32 3.14 1.04 1.42 1.17 78.86 0.53 0.70 0.82 нд 0.50 0.58 0.16 0.22 
17 2473К 0-3 2.72 1.00 0.34 2.96 1.02 1.33 1.15 81.20 0.46 0.75 0.85 нд нд 0.56 0.17 0.22 
18 4-9 2.01 0.99 0.35 2.92 1.04 1.34 1.16 81.32 0.58 0.72 0.83 нд 0.44 0.57 0.17 0.22 
19 2474К 0-3 2.25 1.26 0.55 2.40 1.05 1.28 1.16 82.70 0.51 0.66 0.80 0.57 0.43 0.57 0.13 0.28 
20 5-10 2.59 1.10 0.46 2.34 1.01 1.35 1.16 80.26 0.45 0.67 0.80 0.66 0.43 0.57 0.15 0.27 
21 2478К 0-3 2.25 1.13 0.48 2.35 1.02 1.28 1.16 83.24 0.50 0.66 0.80 0.76 0.44 0.56 0.14 0.26 
22 5-10 1.27 1.07 0.48 2.16 1.03 1.35 1.22 78.87 0.81 0.65 0.79 0.67 0.45 0.57 0.15 0.26 
23 2480К 0-3 1.34 1.13 0.54 2.01 1.01 1.25 1.19 83.36 0.78 0.65 0.79 0.57 0.47 0.57 0.14 0.27 
24 5-10 1.32 1.13 0.51 2.15 1.04 1.36 1.22 78.15 0.80 0.64 0.79 0.63 0.47 0.57 0.14 0.28 
Примечание: нд – нет данных; Пр – пристан; Фит – фитан; OEPn = (n-Cn-2 + 6 × n-Cn + n-Cn+2) / (4 × n-Cn-1 + 4 
× n-Cn+1); OEP17-19 = (OEP17 + OEP19)/2; OEP27-31 = (OEP27 + OEP29 + OEP31)/3; TAR = (н-С27 + н-С29 + н-С31)/ 
(н-С15 + н-С17 + н-С19) [Peters et al., 2005]; CPI1 = 2*(n-C23 + n-C25 + n-C27 + n-C29) / (n-C22 + 2*(n-C24 + n-C26 + 
n-C28) + n-C30)) [Peters et al., 2005]; Lithic n-alk/Σn-alk=ΣС25-С33-(ΣC25-С33*(6.2*(CPI1-1))/(4.2*(CPI1+1)) 
[Yamamoto, Polyak, 2009]; MPI-1 = 1.5 × (3MP + 2MP)/(Pn + 9/4MP + 1MP), где Ф – фенантрен, MФ – 
метилфенантрен [Peters et al., 2005]; Rс=0.6*(MPI-1) +0.4) [Radke,1988]). 
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Схожая картина распределения была отмечена при исследовании поверхностных 
отложений (0-5 см), отобранных на профиле Ис-фиорда и вблизи о-ва Эдж, которые, в 
свою очередь, сопоставлялись с палеогеновым гумусовым углем Шпицбергена [Петрова, 
1998]. В образце угля максимум н-алканов находился в области н-С16‒н-С23, а содержание 
н-С17 в 3.2 раза превышало содержание н-С29.  Данный парадоксальный результат 
объяснялся глубиной катагенной преобразованности изученного образца, определенной 
по отражательной способности витринита (Ro>0.7). Согласно исследованиям Тиссо и 
Вельте [Tissot, Welte,1984] на стадии преобразования Ro>0.7 н-алканы утрачивают свои 
генетические индикаторные свойства и становятся маркерами уровня катагенеза. 

 

 
Рис. 2. Масс-фрагментограмма н-алканов и изопреноидов. 

 

 
Рис. 3. Характеристика терригенной части РОВ согласно индексом зрелости OEP и CPI 

(CPI = ((C25+C27+C29+C31+C33) / (C24+C26+C28+C30+C32) + (C25+C27+C29+C31+C33) / 
(C26+C28+C30+C32+C34))/2 [Scalan, Smith, 1970]. 

 
В рамках данного исследования расчётные значения отражательной способности 

витринита Rc (основанные на метилфенантреновом индексе - MPI-1) (табл. 2) [Radke, 1988] 
варьируют от 0.7 до 0.8. На значительный вклад осадочного материала, содержащего 
термально зрелое вещество, указывает и относительное содержание «литифицированных» 
(постдиагенетических) компонентов (%Lithic/ΣС25-С33 до 84.7%) [Yamamoto, Polyak, 2009]. 
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Исключением являются лишь осадки станций 2418 и 2421, в которых значения CPI1 
возрастают до 1.5, индекс нечетности соответствует величинам, отражающим 
незначительный уровень деградации гумусовой составляющей (ОЕР27-29~2.0), а доля 
литифицированных компонентов (%Lithic/ΣС25-С33) имеет минимальные значения среди 
всех изученных осадков (табл. 2). Это, по-видимому, обусловлено отсутствием влияния 
вблизи этих точек характерного для района работ материала размыва и переотложения 
коренных пород, содержащих угленосные толщи Шпицбергена (данные 
сейсмоакустического профилирования). 

В районе западной части Шпицбергена изученные раннее осадки (0-37 см) 
[Morgunova et al., 2019] также обладали характеристиками, сравнимыми с углями южного 
побережья Ис-фиорда [Cmiel, Fabianska, 2004], включая незначительный уровень 
преобладания нечетных над четными н-алканами, высокий уровень соотношения Пр/Фит 
(1.8÷12 в углях и около 3.5 для осадков), сопоставимые диапазоны н-алканов и 
изопреноидов: Пр/С17, Фит/С18 – 1.4 и 0.8 в угле и около 1.6 и 0.6 в отложениях 
соответственно и относительно низкие значения CPI (1.1÷4.2 для углей и около 1.6 для 
осадков). 

Соответственно, полученные в рамках данного исследования результаты анализа н-
алканов и изопреноидов соответствуют органо-геохимическому фону для северо-западной 
части акватории Баренцева моря. 

Важно отметить, что в триасовых образцах микробиолитов, отобранных с Западного 
Шпицбергена, о-ва Надежды, о-ва Эдж практически везде был обнаружен высокий 
уровень преобразованности н-алканов в составе РОВ (CPI, ОЕР17, ОЕР27~1) [Тугарова, 
2014]. Учитывая, что накопление отложений в акватории определяется многими 
факторами, включая поступление материала с суши, не исключено влияние 
микробиолитов на степень зрелости РОВ в поверхностных осадках. 

 

 
Рис. 4. Характеристика генетического типа и фациальных условий осадконакопления РОВ 

изученных отложений (диаграмма Кеннона-Кессоу) [Connan, Cassou, 1980]. 
 
Наряду с н-алканами одними из основных представителей молекулярных маркеров в 

РОВ являются стераны – продукты диагенетического преобразования различного вида 
стеролов (компонентов мембран эукариотических клеток). 

Относительное содержание регулярных стеранов в РОВ отложений позволяет 
идентифицировать вклад ОВ микроводорослей (холестан – С27), зоопланктона и/или 
лагунных водорослей (метилхолестан – С28) и высших растений (этилхолестан – С29). 
Однако, важно отметить, что происхождение стеранов С29 связывают также с развитием 
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зелёных водорослей, кокколитофорид (Prymnesiohyceae) и цианобактерий [Volkman et al., 
1986; Li et al., 2018]. 

Среди всех изученных отложений ненарушенный гомологический ряд регулярных 
стеранов (С27-С29) не выявлен ни в одном образце. В составе идентифицированных 
соединений преобладают холестаны (С27) и этилхолестаны (С29), а их соотношение 
отражает смешанный состав с доминированием последних (табл. 2). При этом следовые 
содержания стеранов (либо их полное отсутствие) в ряде отложений могут являться 
результатом деградации этих соединений в ходе созревания и термального 
преобразования. 

Для оценки зрелости органического вещества по стеранам, как правило, 
используются соединения состава С29. С ростом степени преобразованности РОВ в 
составе αα-стеранов возрастает относительное содержание более термодинамически 
стабильных S-изомеров. При этом параметр С29αα20S/(20S+20R), отражающий процесс 
термальной изомеризации, является наиболее важным и изменяется от 0 до ~0.5, где 
максимальные значения соответствуют стадии >МК1 [Peters et al., 2005]. Согласно 
полученным данным по распределению стеранов (табл. 2), РОВ большинства изученных 
отложений приближено к области предельных значений, т. е. по своему уровню зрелости 
приближается к катагенной стадии. 

Пентациклические насыщенные УВ (гопаны), как и стераны, являются 
хемофоссилиями. Предшественники гопанов – химические структуры, неизменные 
составляющие различных прокариот, включая многочисленные виды архей, бактерий и 
сине-зеленых водорослей [Peters et al., 2005; Конторович и др., 2009]. Незрелыми 
предшественниками гопанов являются терпеноиды, содержащиеся в клеточных 
мембранах (гопены, гопаноиды). На стадии седиментогенеза и раннего диагенеза 
образуются незрелые гопаны (ββ-гопаны) и гопены. На более глубокой 
(постдиагенетической) стадии трансформации ОВ происходит структурная перестройка 
гопанов с формированием βα- и αβ-гопанов (зрелые гопаны). Для гопанов состава С31 – 
С35 (гомогопаны) происходит также изомеризация из конфигурации R в конфигурацию S. 
Исходя из этих структурных перестроек формируются границы зрелости РОВ, 
определяемые по соотношениям 22S/(22S+22R) и βα/(αβ+βα) [Peters et al., 2005]. 

 

 
Рис. 5. Распределение основных групп терпанов в РОВ осадков  

(компонентный состав групп в [Morgunova et al., 2019]). 
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В составе изученных поверхностных и подповерхностных отложений доминируют 
гео-структуры (зрелые βα- и αβ-гопаны, S-изомеры гомогопанов), а их соотношения 
указывают на катагенетический уровень зрелости РОВ (H31 S/(S+R)~0.6; H29 
βα/(αβ+βα)~0.2) (табл. 2; рис. 5). Отношение 18α-30-норнеогопана к норгопану 
29Ts/(29Ts+C29)~0.2, где 29Тs более термодинамически устойчивое соединение, так же 
свидетельствует о том, что изученные осадки достигли уровня мезокатагенеза. 

Суммарное содержание полициклических ароматических УВ (ПАУ) в изученных 
осадках не превышает фоновых значений для северо-западной части Баренцева моря 
[Dahle et al., 2006; Литвиненко и др., 2016; Morgunova et al., 2019] и варьирует от 944 до 3 
865 нг/г. В составе РОВ отложений доминируют такие голоядерные и алкилированные 
ПАУ как: фенантрен и его алкил-гомологи, алкил-гомологи хризена, алкил-гомологи 
нафталина, бенз(b,j,k)флуорантен, бенз(а)пирен, бенз(е)пирен, хризен, трифенилен, 
флуорантен, пирен и метил-гомологи пирена (см. рис. 6). 

Большинство этих соединений указывают на смешанную пирогенную и 
петрогенную природу РОВ. ПАУ пирогенного генезиса характеризуются меньшим 
количеством алкил-замещённых структур, т.к. алкил-радикалы легче отщепляются под 
воздействием высоких температур. Так, в случае петрогенного генезиса полиаренов 
преобладают алкилированные 2-3-ядерные соединения, а в случае пирогенного 
происхождения, как правило, 4-6-голоядерные компоненты [Халиков, 2024]. 

Соответственно, доминирование во всех изученных отложениях алкилированных 
фенантренов, алкилированных хризенов и голоядерного фенантрена, обусловлено 
петрогенными источниками ПАУ. Этот вывод подтверждается высокими содержаниями 
дибензтиофена и его производных, источниками которых являются ископаемая нефть, 
уголь и газ [Ровинский и др., 1988; Bertilsson et al., 2002], а формирование происходит при 
умеренной температуре в течении длительного периода времени. 

Пирогенные полиарены являются продуктами горения или пиролиза и могут иметь 
как природные, так и антропогенные источники. В изученных осадках они представлены 
флуорантеном, пиреном, метилированными пиренами, бенз(а)антраценом, 
бенз(b,j,k)флуорантеном, бенз(а)пиреном, бенз(е)пиреном, индено(1,2,3-cd) пиреном, 
бензо(ghi)периленом, дибенз(a,h)антраценом и др. (рис. 6). 

ПАУ биогенного происхождения, основными источниками которых являются 
водоросли, высшие растения и бактерии, в изученных образцах представлены 
незначительными количествами ретена, кадалена, 3,3,7–триметилтетрогидрохризена и 
перилена (рис. 6). 

Одним из наиболее эффективных способов дифференциации источников ПАУ 
является анализ соотношений изомерных соединений (имеющих одинаковый 
молекулярный состав, но разные строения и свойства). Так, менее стабильные 
«кинетические» изомеры образуются при относительно коротком воздействии высоких 
температур, и их высокие концентрации в образцах обычно свидетельствуют о 
воздействии человека и/или поступлении продуктов сгорания, а более стабильные 
«термодинамические» изомеры преимущественно образуются в процессе длительного 
диа- и катагенетического созревания. Таким образом, соотношение изомеров позволяет 
оценить экологическое состояние объекта. Согласно данным по анализу наиболее 
характерных соотношений изомеров (Фл/(Фл+Пир)=0.4÷0.5; БаА/(БаА+Хр)=0.1÷0.2; 
И(1,2,3-cd)Пир/(И(1,2,3-cd)Пир+Б(g,h,i)Пер)=0.1÷0.3; Б(е)Пир/Б(a)Пир=5.1÷8.9 в 
изученных отложениях не установлено преобладание продуктов горения биомассы и 
твердых топлив. 

Соотношения неизомерных ПАУ ((Б(a)Пир/(Б(a)Пир+Хр)=0.1÷0.3; Б(a)Пир/ 
Б(g,h,i)Пер=0.3÷0.6) и отношение голоядерных полиаренов к их метилированным 
производным (Пир/(Пир+MПир)=0.3÷0.4; Ф/(Ф+MФ)=0.2) также свидетельствуют о 
преимущественно петрогенной природе вещества с незначительным вкладом других 
петрогенных и пирогенных источников, таких как продукты сжигания угля, дизельного 
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топлива/бензина, которые, вероятно, могут поступать в осадки в результате 
антропогенной активности в акватории, с атмосферным переносом и/или в результате 
ледового разноса, а также иных факторов. 

 

 
 

Рис. 6. Распределение голоядерных (А) и алкилированных (Б) ПАУ в РОВ донных осадков. 
Примечание: Флу – флуорен; ДБТ - дибензтиофен; Б(а)А – Бенз(а)Антрацен; Хр – хризен ; ТФ – 

трифенилен; ПЕР – перилен; ДБА – дибенз(a,h)антрацен; Ф – фенантрен; ФЛ – флуорантен; Пир –пирен ; 
И(1,2,3,-cd)Пир – индено(1,2,3,-cd)пирен; Б(g,h,i)Пер – бенз(g,h,i)перилен ; Кад – кадален; Рет – ретен; 
Алк-Н – алкил-нафталин; ТМТХр – триметилтетрагидрохризен; БФлу – бензфлуорен; МФлС – мелил-
флуорантен С; АлкФ – алкил-фенантрен; 1,4 МФлу – 1,4 метил-флуорен; 2,4,1 МПир – 2,4,1 метил-пирен; 
Алк-ДБТ – алкил-дибензтиофен; 2МФлу – 2метил-флуорен; Алк Хр – алкил-хризен; МФлb – метил-
флуорантен b; 1/3МФл – 1/3метил-флуорантен. 
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Выводы. Комплекс полученных органо-геохимических характеристик 
поверхностных и подповерхностных отложений района желоба Стур-фиорда (Баренцево 
море) позволяет заключить, что изученные осадки этой части акватории характеризуются 
специфическими чертами распределения РОВ, не характерными для современных 
отложений. По составу н-алканов и изопреноидов РОВ преимущественно катагенетически 
зрелое, что согласуется и с относительным содержание «литифицированных» 
(постдиагенетических) компонентов, и с расчётными значения отражательной 
способности витринита по метилфенантренам. Величины стерановых индексов зрелости 
РОВ большинства изученных отложений приближаются к предельным значениям, что 
позволяет говорить о катагенетической стадии его трансформации. В составе 
исследованных поверхностных и подповерхностых осадков доминируют диагенетически 
зрелые структуры гопанов, а величины их соотношений соответствуют стадии 
мезокатагенеза.  Доминирование во всех изученных отложениях алкилированных 
фенантренов, алкилированных хризенов и голоядерного фенантрена, обусловлено 
петрогенными источниками ПАУ. Соотношение изомеров ПАУ, а также неизомерных 
соединений полиаренов и голоядерных полиаренов к их метилированным производным 
свидетельствуют о преимущественно петрогенной природе вещества с незначительным 
вкладом пирогенных источников, таких как продукты сжигания угля, дизельного 
топлива/бензина, которые, наиболее вероятно, попадают в осадки в результате 
антропогенной активности в акватории, с атмосферным переносом и/или в результате 
ледового разноса. 

Необходимо отметить, что схожая картина органо-геохимических характеристик 
РОВ была получена и ранее, при исследовании поверхностных отложений, отобранных на 
профиле Ис-фиорда, вблизи о-ва Эдж [Петрова, 1998] и в районе западной части 
Шпицбергена [Morgunova et al., 2019]. Отложения, в свою очередь, сопоставлялись с 
палеогеновым гумусовым углем Шпицбергена и углями южного побережья Ис-фиорда, 
что в результате позволило подтвердить наличие материала размыва и переотложения 
коренных пород, содержащих угленосные толщи Шпицбергена (данные 
сейсмоакустического профилирования) в изучаемом районе. 

Соответственно, полученные в рамках данного исследования результаты 
соответствуют органо-геохимическому фону для северо-западной части акватории 
Баренцева моря. 

Следует отметить, что в триасовых образцах микробиолитов, отобранных с 
Западного Шпицбергена, о-ва Надежды, о-ва Эдж практически везде был обнаружен 
высокий уровень преобразованности РОВ [Тугарова, 2014]. Учитывая, что накопление 
отложений в акватории контролируется многими факторами, включая поступление 
материала с суши, не исключено влияние микробиолитов на степень зрелости РОВ в 
поверхностных осадках. 
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The studied Quaternary sediments of the Storfjorden Trough area in the Barents Sea are 
characterized by specific features of organic matter (OM) distribution that are not typical of modern 
sediments. The high contents of kerogen, the composition of n-alkanes and isoprenoids, as well as 
the values of hopane and sterane maturity indices indicate the catagenetic stage of its transformation. 
The dominance of phenanthrene, alkylated phenanthrenes, and alkylated chrysenes in all the studied 
sediments is due to petrogenic sources of PAHs. 
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