| ||
| ||
doi: 10.24412/2687-1092-2023-10-78-84 1 Geological Institute of Russian Academy of Sciences, Moscow, Russia 2 Lomonosov Moscow State University, Faculty of Geography, Moscow, Russia 3 Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
|
Abstract. Interpretation of the results of multibeam echo sounding and high-frequency seismic profiling, carried out as part of the voyages of the research vessels “Akademik Nikolay Strakhov” in 2018-2019, allowed us to establish that mud volcanic processes play an important role in the formation of pingo-like features on the Pechora Sea shelf. The process of squeezing out plastic-frozen strata to the surface in areas of discontinuous submarine permafrost distribution leads to a violation of its cohesion, the appearance of cracks along which fluid flow moves up the section, involving finely dispersed material in the movement. Pingo-like features mark channels for fluids to reach the surface. The stratigraphy of the sediments composing pingo-like features allows us to conclude that they accumulated sequentially through periodic superposition (similar to mud volcanoes). The freezing of mud volcanic clayey sediments apparently has a syngenetic nature and occurred under conditions of subzero bottom temperatures with the participation of the throttling effect. Keywords: Arctic, degassing, fluidogenic landforms, submarine permafrost, mud volcanism
REFERENCES:
Atlas: geology and minerals of the Russian shelves. 2004. M.: GIN RAS. 108 pp. (In Russ.) Bondarev V.N., Rokos S.I., Kostin D.A. and others. Sub-permafrost gas accumulations in the upper part of the sedimentary cover of the Pechora Sea // Russian Geology and Geophysics. 2002. Vol. 43. No. 7. P. 587–598. (In Russ.) Denisova A.P., Moroz Е.А., Eremenko Е.А., Sukhikh E.A., Arkhipov V.V. Signs of degassing within the glacial shelf in the north-eastern part of the Barents sea // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. 2022. Is. 9. P. 78-86. doi: 10.24412/2687-1092-2022-9-78-86 Kokhan A.V., Moroz E.A., Eremenko E.A., Denisova A.P., Ananiev R.A., Sukhik E.A., Nikiforov S.L., Sokolov S.Yu., Razumovskiy A.A. Fluidogenic landforms within the permafrost zone on the shelf of the Pechora and Kara seas // Lomonosov Geography Journal. 2023. N. 3. P. 104-124. (In Russ.) doi:10.55959/MSU0579-9414.5.78.3.9 Melnikov V.P., Fedorov K.M., Wolf A.A., Spesivtsev V.I. Analysis of a possible scenario for the formation of bottom ice mounds on the shelf of the Pechora Sea // Cryosphere of the Earth. 1998. Vol. 11. No. 4. P. 51-57. (In Russ.) Methodological guidelines for compiling and preparing for publication sheets of the state geological map of the Russian Federation at a scale of 1:1,000,000 (third generation). 2009. SPb.: VSEGEI. 198 p. (In Russ.) Mironyuk S.G., Kolyubakin A.A., Golenok O.A. and others. Mud volcanic structures (volcanoids) of the Kara Sea: morphological features and structure / In: Geology of the seas and oceans: Materials of the XXIII International Scientific Conference (School) on Marine Geology. M. IO RAS. 2019. T. 5. pp. 192-196. (In Russ.) Moroz E.A., Eremenko E.A., Denisova A.P. et al. The Manifestation of Degassing in the Sedimentary Cover and Relief of the Southern Novaya Zemlya Trench (Pechora Sea) // Doklady Earth Sciences. 2023. Vol. 512. Is. 1. P. 773–778. doi: 10.1134/S1028334X23601013 Sokolov S.Y., Moroz E.A., Zarayskaya Y.A., Abramova A.S., Ananyev R.A., Sukhikh E.A. Mapping of dangerous geological objects and processes at the Northern and Central parts of the Barents Sea shelf according to the hydroacoustic data from RV “Akademik Nikolai Strakhov” // Arktika: ekologiya i ekonomika. 2023. Vol. 13. No. 2. P. 164-179. (In Russ.) doi:10.25283/2223-4594-2023-2-164-179 Blasco S., Bennett R., Brent T. et al. 2010 State of Knowledge: Beaufort Sea seabed geohazards associated with offshore hydrocarbon development // Geological Survey of Canada, Open File 6989. 2013. 340 p. doi:10.4095/292616 Bogoyavlensky V., Kishankov A., Yanchevskaya A. et al. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas // Geosciences. 2018. Vol. 8. Is. 12. 453. doi:10.3390/geosciences8120453 Overduin P., Schneider von Deimling T., Miesner F. et al. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP) // Journal of Geophysical Research: Oceans. 2019. Vol. 124. Is. 6. P. 3490-3507. doi:10.1029/2018JC014675 Paull C.K., Lii W.U., Dallimore S.R., Blasco S.M. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates // Geophysical Research Letters. 2007. Vol. 34. L01603. doi:10.1029/2006GL027977 Semenov P., Portnov A., Krylov A. et al. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea // Geochemistry. 2020. Vol. 80. №3. 125509. doi:10.1016/j.chemer.2019.04.005 Thorsnes T., Chand S., Bellec V.K. et al. Gas seeps in Norwegian waters – distribution and mechanisms // Norwegian Journal of Geology. 2023. Vol. 103. 202309. doi:10.17850/njg103-2-4 Van Rensbergen P., Rabaute A., Colpaert A. et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data // International Journal of Earth Sciences. 2007. Vol. 96. Is. 1. P. 185-197. doi:10.1007/s00531-005-0021-2
|
Cite this article: Eremenko E.A., Kokhan A.V., Moroz E.A., Denisova A.P., Mutovkin A.D., Sokolov S.Yu. Mud volcanic processes in the development of pingo-like features in Pechora Sea // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. 2023. Issue 10. P. 78-84. doi: 10.24412/2687-1092-2023-10-78-84
|