Kashdan A.Y.1, Sheinkman V.S. 2

DIFFERENCE IN THE SURGES OF ANCIENT GLACIERS IN THE BARENTS AND KARA SEAS 

Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Issue 10.

Download *pdf

doi: 10.24412/2687-1092-2023-10-116-122

Лицензия Creative Commons

1 Computer and Software Engineering Department, Polytechnique Montréal, Montreal, Canada

2 Earth Cryosphere Institute FRS Tyumen Science Center SB RAS, Tyumen, Russia

 

     

Abstract. Paleoglaciological modeling was carried out for the western Arctic sector, running a series of simulations with different parameters to address the problem that may result from extreme advances of ancient glaciers (surges). The first type of the Barents Sea is characterized by glaciers that can remain on top of the bed indefinitely and begin to retreat some time after the onset of climatic impact, with the surge occurring already after the ice shelf has been destroyed. The second Kara type is distinguished, when glaciers slowly retreat on flat tops of the bed under the influence of climatic factor, and the surge is caused by the superposition of synchronous effects of warming and epichronic effects of climatic events.

Keywords: Late Pleistocene, Arctic, paleoglaciology, glacial geomorphology, glacier surges

 

 


 

 

REFERENCES:

Bushueva I.S., Glazovsky A.F., Nosenko G.A. Development of movement in the western part of the Vavilov ice dome on Severnaya Zemlya in 1963–2017 // Ice and Snow. 2018. 58(3). With. 293-306. doi: 10.15356/2076-6734-2018-3-293-306

Golubev V.N. Modern fluctuations of the Vavilov ice dome on Severnaya Zemlya // Materials of glaciological research. 1988. Vol. 85. p. 196–204.

Grosvald M.G., Lapteva A.M. Kola Peninsula: traces of early Holocene surges and floods caused by the collapse of the Kara ice sheet // Materials of glaciological research. 2001, Issue 90, p. 20-29.

Rybak O.O. Mathematical models of continental ice sheets: 1. Architecture of models // Cryosphere of the Earth. 2008. T. 12. No. 1. P. 12-23.

Abe T., Furuya M., Sakakibara D. Brief communication: twelve-year cyclic surging episodes at Donjek Glacier in Yukon, Canada // Cryosphere. 2016. Vol. 10. Is. 4. P. 1427–1432. doi: 10.5194/tc-10-1427-2016

Benn D.I., Fowler A.C., Hewitt I., Sevestre H. A general theory of glacier surges // Journal of Glaciology. 2019. Vol. 65. Is. 253. P. 701-716. doi: 10.1017/jog.2019.62

Bindschadler R.A., Bamber J.L., Anandakrishnan S. Onset of streaming flow in the Siple Coast Region, West Antarctica. In Alley R.B. and Bindschadler R.A. (eds), The West Antarctic Ice Sheet: Behaviour and Environment. Antarctic Research Series. 2001. vol. 77. Washington, DC: AGU, pp. 123–136. doi: 10.1029/ar077p0123

Calov R., Ganopolski A., Petoukhov V., Claussen M., Greve R. Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model // Geophysical Research Letters. 2002. Vol. 29. Is. 24, 2216. doi:10.1029/2002GL016078

Clarke G.K.C., Collins S.G. and Thompson D.E. Flow, thermal structure, and subglacial conditions of a surge-type glacier // Canadian Journal of Earth Sciences. 1984. Vol. 21. Is. 2. P. 232–240. doi:10.1139/e84-024

Evans D.J.A., Rea B.R. Geomorphology and sedimentology of surging glaciers: a landsystems approach // Annals of Glaciology. 1999. Vol. 28. P. 75-82. doi: 10.3189/172756499781821823

Evans D. J., Rea B. R. Surging glacier landsystem. In Glacial landsystems. Routledge. 2014. pp. 259-288.

Kurjanski B., Rea, B.R., Spagnolo M., Winsborrow M., Cornwell D. G., Andreassen K., Howell J. Morphological evidence for marine ice stream shutdown, central Barents Sea // Marine Geology. 2019. Vol. 414. P. 64-76. doi: 10.1016/j.margeo.2019.05.001

Kyrke-Smith T.M., Katz R.F., Fowler A.C. Stress balances of ice streams in a vertically integrated, higher-order formulation // Journal of Glaciology. 2013. Vol. 59. Is. 215. P. 449–466. doi:10.3189/2013JoG12J140

Lauzon B., Copland L., Van Wychen W., Kochtitzky W., McNabb R., Dahl-Jensen D. Dynamics throughout a complete surge of Iceberg Glacier on western Axel Heiberg Island, Canadian High Arctic // Journal of Glaciology. 2023. Vol. 69. Is. 277. P. 1333-1350. doi: 10.1017/jog.2023.20

Meier M.F., Post A. What are glacier surges? // Canadian Journal of Earth Sciences. 1969. Vol. 6. Is. 4. P. 807-817. doi: 10.1139/e69-081

Oerlemans J. Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen // The Cryosphere. 2018. Vol. 12. Is. 9. P. 3001-3015. doi: 10.5194/tc-12-3001-2018

Ou H.W. A theory of glacier dynamics and instabilities Part 1: Topographically confined glaciers // Journal of Glaciology. 2022. Vol. 68. Is. 267. P. 1-12. doi: 10.1017/jog.2021.20

Raymond C.F. How do glaciers surge? A review // Journal of Geophysical Research: Solid Earth. 1987. Vol. 92. P. 9121-9134. doi: 10.1029/JB092iB09p09121

Robel A.A., DeGiuli E., Schoof C., Tziperman E. Dynamics of ice stream temporal variability: modes, scales, and hysteresis // Journal of Geophysical Research: Earth Surface. 2013. Vol. 118. Is. 2. P. 925–936. doi:10.1002/jgrf.20072

Schoof C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis // Journal of Geophysical Research: Earth Surface. 2007. Vol. 112. Is. F3. doi: 10.1029/2006JF000664

Sevestre H., Benn D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging // Journal of Glaciology. 2015. Vol. 61. Is. 228. P. 646-662. doi: 10.3189/2015JoG14J136

Sharp M. Surging glaciers: behaviour and mechanisms // Progress in Physical Geography. 1988. Vol. 12. Is. 3. P. 349-370. doi: 10.1177/030913338801200302

Tsai V.C., Stewart A.L., Thompson A.F. Marine ice-sheet profiles and stability under Coulomb basal conditions // Journal of Glaciology. 2015. Vol. 61. Is. 226. P. 205-215. doi: 10.3189/2015JoG14J221

Tulaczyk S., Kamb, W.B., Engelhardt H.F. Basal mechanics of Ice Stream B, west Antarctica: 2. Undrained plastic bed model // Journal of Geophysical Research: Solid Earth. 2000. Vol. 105. Is. B1. P. 483-494. doi: 10.1029/1999JB900328

Wytiahlowsky H., Stokes, C.R., Evans D.J. Remote sensing of glacier change (1965–2021) and identification of surge-type glaciers on Severnaya Zemlya, Russian High Arctic // Journal of Glaciology. 2023. P. 1-21. doi: 10.1017/jog.2023.60 

 

 

Cite this article:

Kashdan A.Y., Sheinkman V.S. Difference in the surges of ancient glaciers in the Barents and Kara seas // Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. 2023. Issue 10. P. 116-122. doi: 10.24412/2687-1092-2023-10-116-122

 



eXTReMe Tracker


Flag Counter

Яндекс.Метрика

Hosted by uCoz